Techno-economic and environmental impact of a photovoltaic system to improve energy quality in isolated areas

Authors

  • Pedro Antonio Mejía-Toro Universidad Técnica de Manabí, Facultad de Posgrado, Portoviejo, Ecuador
  • Steven Rubén Briones Giler Universidad Técnica de Manabí, Facultad de Posgrado, Portoviejo, Ecuador
  • María Rodríguez Gámez Universidad Técnica de Manabí, Facultad de Ingeniería y Ciencias Aplicadas, Carera de Ingeniería Eléctrica, Portoviejo, Ecuador
  • Guillermo Antonio Loor Castillo Universidad Técnica de Manabí, Facultad de Ingeniería y Ciencias Aplicadas, Carera de Ingeniería Eléctrica, Portoviejo, Ecuador
  • Gilberto Ramiro Holguín Intriago Universidad Técnica de Manabí, Facultad de Ingeniería y Ciencias Aplicadas, Carera de Ingeniería Eléctrica, Portoviejo, Ecuador

Keywords:

rural electrification, solar energy, sustainability, carbon footprint

Abstract

The lack of access to electricity in isolated areas represents a significant obstacle to the economic development of their inhabitants. Solar photovoltaic technology emerges as a promising solution to address electrification challenges in these areas; However, its implementation faces technical, economic and environmental barriers. The objective of the research was to carry out a technical, economic and environmental analysis of a photovoltaic system designed for an isolated community. The bibliographic review, qualitative and quantitative method was used as a methodology, in addition to PvSyst 7.2, the result was the estimation of energy demand, the analysis of solar potential in the region, the design of the photovoltaic system and the evaluation of energy losses. energy. The system has a power of 180 kWp, the system is designed to meet the energy needs of the community, improve the stability of the electricity supply and reduce dependence on fuel-powered generators. The economic analysis shows a recovery period of 16 years and a generation cost of $0.0826 USD/kWh, competitive with traditional rates. In addition, it is projected that the system will avoid the emission of 2,446.1 tons of CO₂ in 30 years, thus contributing to sustainability and reducing the carbon footprint.

Downloads

Download data is not yet available.

References

Barasa, M., & Akanni, O. (2021). Sustainable energy transition for the generation and supply of electricity from renewable and low-carbon sources. frontiers, 9(1), 1-8. doi.org/10.3389/fenrg.2021.743114

Guanacunga, A., Iza, M., & Lasluia, D. (2022). Solar Projects in Ecuador. Cotopaxi Technical University. https://repositorio.utc.edu.ec/

Mera, Jean. P, Rodriguez, M. (2024). Feasibility for rural electrification with photovoltaic technology 593 Digital Publisher, Vol. 9, No. 3 (Issue dedicated to: Multidisciplinary), pp. 1139-1153, https://dialnet.unirioja.es/servlet/articulo?codigo=9535938

Ministry of Energy and Mines. (September 3, 2019). resource and energy. Retrieved from https://www.recursosyenergia.gob.ec/manabi-tendra-la-central-de-energia- photovoltaic-largest-in-the-country/#:~:text=The%20Aromo%20is%20a%20new,the%20production%C3%B3n%20of

Miravet, B., Garcia, A., Yuli, R., Inostroza, A., Fernandez, G., & Apesteguia, A. (2022). Solar photovoltaic technology in isolated rural communities in Latin America and the Caribbean. Energy Reports, 8(2), 1238-1248. doi.org/10.1016/j.egyr.2021.12.052

Navas, W., Durango, R., & Landivar, E. (2022). The potential of photovoltaic energy as a source of electricity in Manabí. Digital Science, 6(1), 91-115. doi:doi.org/10.33262/cienciadigital.v6i1.1956

PVSyst, (2024). Design and simulation software for your photovoltaic systems. https://www.pvsyst.com/

Rodriguez, M., Vázquez, A. (2018). Photovoltaic Energy in the Province of Manabí. UTM Publishing. ISBN: 978-9942-948-20-5. https://utm.edu.ec/ediciones/libros-de-texto/713-la-energia-fotovoltaica-en-la-provincia-de-manabi

Salau, A., Khan, B., & Gidey, I. (2023). Techno-Economic analysis of distributed generation for power system reliability and loss reduction. International Journal of Sustainable Energy, 42(1), 873-888. doi:10.1080/14786451.2023.2244617

Strategic Energy. (2023). Ecuador strengthens regulatory instruments for distributed generation and self-supply. News, p. 12-15. Retrieved from https://www.energiaestrategica.com/ecuador-fortalece-instrumentos-regulatorios-para- distributed-generation-and-self-sufficiency/

Valencia, P. (2018). https://dialnet.unirioja.es/servlet/articulo?codigo=4547088Distributed generation: democratization of electrical energy. Free Criterion, 2(1), 105-113.

Zambrano, L. (2023). Electric Energy Situation in Ecuador 2024. elements, pp. 1-2. https:///www.elementsgroup.com.ec/situacion- electric-energy-in-ecuador-2024/

Downloads

Published

24-11-2024

How to Cite

Mejía-Toro, P. A., Briones Giler, S. R., Rodríguez Gámez, M., Loor Castillo, G. A., & Holguín Intriago, G. R. (2024). Techno-economic and environmental impact of a photovoltaic system to improve energy quality in isolated areas. The International Tax Journal, 51(1), 18–28. Retrieved from https://internationaltaxjournal.online/index.php/itj/article/view/3

Issue

Section

Online Access