Reshaping knowledge management in the digital age through the integration of artificial intelligence and deep knowledge

Authors

Keywords:

artificial intelligence, knowledge management, data transformation, ethical governance, deep knowledge

Abstract

In the digital era, the transformation of vast, heterogeneous data into actionable knowledge stands as a pivotal challenge for organizations striving to maintain competitive and adaptive advantages. This paper explores how artificial intelligence (AI) serves as a catalyst for advancing knowledge management (KM), enabling the conversion of raw data into contextually rich, strategic insights. Traditional KM frameworks, designed for static and structured information, falter in the face of dynamic, unstructured data streams. By integrating AI technologies, organizations can automate data aggregation, enhance contextualization, and personalize knowledge dissemination. However, the adoption of AI-driven KM systems introduces ethical and operational challenges, including algorithmic bias, transparency deficits, and the need to balance autonomy with human oversight. The paper proposes interdisciplinary strategies to address these challenges, emphasizing ethical governance, participatory design, and hybrid human-AI collaboration. Ultimately, the study underscores that AI’s role in KM is not to replace human judgment but to augment it, fostering resilient, innovative ecosystems where data-driven insights align with organizational values and societal norms. The findings offer a roadmap for leveraging AI to anticipate challenges, optimize decision-making, and cultivate sustainable innovation in an increasingly complex digital area.

Downloads

Download data is not yet available.

References

Abdillah, A., Widianingsih, I., Buchari, R. A., & Nurasa, H. (2024). The knowledge-creating company: How Japanese companies create the dynamics of innovation. Learning: Research and Practice, 10(1), 121–123. https://doi.org/10.1080/23735082.2023.2272611

Biem, A., Butrico, M., Feblowitz, M., Klinger, T., Malitsky, Y., Ng, K., Perer, A., Reddy, C., Riabov, A., Samulowitz, H., Sow, D., Tesauro, G., & Turaga, D. (2015). Towards Cognitive Automation of Data Science. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1). https://doi.org/10.1609/aaai.v29i1.9281

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence. Oxford University Press. https://doi.org/10.1093/oso/9780195131581.001.0001

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners.

Davenport, T. H., & Kirby, J. (2016). Just How Smart Are Smart Machines? Https://Sloanreview.Mit.Edu/Article/Just-How-Smart-Are-Smart-Machines/.

Davianto, H. (2022). The Advantages of Artificial Intelligence in Operational Decision Making. Hasanuddin Economics and Business Review, 6(1), 24. https://doi.org/10.26487/hebr.v6i1.5082

Deng, L. (2018). Artificial Intelligence in the Rising Wave of Deep Learning: The Historical Path and Future Outlook [Perspectives]. IEEE Signal Processing Magazine, 35(1), 180–177. https://doi.org/10.1109/MSP.2017.2762725

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. https://arxiv.org/abs/1810.04805

Diakopoulos, N. (2016). Accountability in algorithmic decision making. Communications of the ACM, 59(2), 56–62. https://doi.org/10.1145/2844110

Dwork, C. (2006). Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11787006_1

El Asri, H., Benhlima, L., & Agnaou, A. (2021). Integrating Artificial Intelligence in Knowledge Management: A Primer (pp. 516–526). https://doi.org/10.1007/978-3-030-62199-5_45

Floridi, L. (2019). Translating Principles into Practices of Digital Ethics: Five Risks of Being Unethical. Philosophy & Technology, 32(2), 185–193. https://doi.org/10.1007/s13347-019-00354-x

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds and Machines, 28(4), 689–707. https://doi.org/10.1007/s11023-018-9482-5

Folke, C., Hahn, T., Olsson, P., & Norberg, J. (2005). Adaptive Governance Of Social-Ecological Systems. Annual Review of Environment and Resources, 30(1), 441–473. https://doi.org/10.1146/annurev.energy.30.050504.144511

Fowler, A. (2000). The role of AI-based technology in support of the knowledge management value activity cycle. The Journal of Strategic Information Systems, 9(2–3), 107–128. https://doi.org/10.1016/S0963-8687(00)00041-X

Friedman, B., & Nissenbaum, H. (1996). Bias in computer systems. ACM Transactions on Information Systems, 14(3), 330–347. https://doi.org/10.1145/230538.230561

Fteimi, N., & Hopf, K. (2021). Knowledge Management in the Era of Artificial Intelligence : Developing an Integrative Framework. https://doi.org/10.20378/irb-49911

Granovetter, M. (1983). The Strength of Weak Ties: A Network Theory Revisited. Sociological Theory, 1, 201. https://doi.org/10.2307/202051

Granovetter, M. S. (1973). The Strength of Weak Ties. American Journal of Sociology, 78(6), 1360–1380.

Gupta, B., Iyer, L. S., & Aronson, J. E. (2000). Knowledge management: practices and challenges. Industrial Management & Data Systems, 100(1), 17–21. https://doi.org/10.1108/02635570010273018

Holland, J. H. (1995). Hidden Order: How Adaptation Builds Complexity. Addison-Wesley, Reading.

Iandolo, F., Loia, F., Fulco, I., Nespoli, C., & Caputo, F. (2021). Combining Big Data and Artificial Intelligence for Managing Collective Knowledge in Unpredictable Environment—Insights from the Chinese Case in Facing COVID-19. Journal of the Knowledge Economy, 12(4), 1982–1996. https://doi.org/10.1007/s13132-020-00703-8

Jarrahi, M. H., Askay, D., Eshraghi, A., & Smith, P. (2023). Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1), 87–99. https://doi.org/10.1016/j.bushor.2022.03.002

Kevin N. Shah, Sandip J. Gami, & Abhishek Trehan. (2024). An Intelligent Approach to Data Quality Management AI-Powered Quality Monitoring in Analytics. International Journal of Advanced Research in Science, Communication and Technology, 109–119. https://doi.org/10.48175/IJARSCT-22820

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix Factorization Techniques for Recommender Systems. Computer, 42(8), 30–37. https://doi.org/10.1109/MC.2009.263

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25(2–3), 259–284. https://doi.org/10.1080/01638539809545028

Liao, Q. V., Gruen, D., & Miller, S. (2020). Questioning the AI: Informing Design Practices for Explainable AI User Experiences. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3313831.3376590

Lundberg, S., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions.

Mian, S. M., Khan, M. S., Shawez, M., & Kaur, A. (2024). Artificial Intelligence (AI), Machine Learning (ML) & Deep Learning (DL): A Comprehensive Overview on Techniques, Applications and Research Directions. 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), 1404–1409. https://doi.org/10.1109/ICSCSS60660.2024.10625198

Mokander, J., & Floridi, L. (2021). Ethics-Based Auditing to Develop Trustworthy AI. https://doi.org/10.1007/s11023-021-09557-8

Nonaka, I., & Takeuchi, H. (1995). How Japanese companies create the dynamics of innovafion. Oxford University.

Novalin, A., Gunawan, A., & Prihandoko, D. (2024). The Implementation of Artificial Intelligence in Knowledge Management: A Systematic Literature Review. 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), 1–6. https://doi.org/10.1109/IATMSI60426.2024.10502986

O’Leary, D. E. (1998). Using AI in knowledge management: knowledge bases and ontologies. IEEE Intelligent Systems, 13(3), 34–39. https://doi.org/10.1109/5254.683180

Oliveira, G., Argôlo, M., Barbosa, C. E., Oliveira de Lima, Y., Dos Santos, H., Lyra, A., & De Souza, J. (2024). Applying Knowledge Management to Support Artificial Intelligence Chatbot Applications. European Conference on Knowledge Management, 25(1), 582–590. https://doi.org/10.34190/eckm.25.1.2482

Pachar, S., Lakshman, K. N., Latha, Y. L. M., B, L., Isravel, Y. A. D., & Katta, S. K. (2024). Leveraging Ai And Data Analytics For Enhanced Decision-Making In Modern Management Practices. 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC), 1–6. https://doi.org/10.1109/ICEC59683.2024.10837057

Pariser, E. (2011). The Filter Bubble: What The Internet Is Hiding From You. Penguin Books.

Praneeth Thoutam. (2024). Automated Data Preparation through Deep Learning: A Novel Framework for Intelligent Data Cleansing and Standardization. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 10(6), 1867–1877. https://doi.org/10.32628/CSEIT241061231

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144. https://doi.org/10.1145/2939672.2939778

Russ, M. (2021). Knowledge Management for Sustainable Development in the Era of Continuously Accelerating Technological Revolutions: A Framework and Models. Sustainability, 13(6), 3353. https://doi.org/10.3390/su13063353

Shollo, A., & Galliers, R. D. (2016). Towards an understanding of the role of business intelligence systems in organisational knowing. Information Systems Journal, 26(4), 339–367. https://doi.org/10.1111/isj.12071

Sundaresan, S., & Zhang, Z. (2022). AI-enabled knowledge sharing and learning: redesigning roles and processes. International Journal of Organizational Analysis, 30(4), 983–999. https://doi.org/10.1108/IJOA-12-2020-2558

Taherdoost, H., & Madanchian, M. (2023). Artificial Intelligence and Knowledge Management: Impacts, Benefits, and Implementation. Computers, 12(4), 72. https://doi.org/10.3390/computers12040072

Tharayil, S. M., Alshami, R. A., Aljaafari, S. F., & Alnajashi, A. A. (2024, May 7). Transforming Knowledge Management System with AI Technology for Document Archives. GOTECH. https://doi.org/10.2118/219313-MS

Tian, X. (2017). Big data and knowledge management: a case of déjà vu or back to the future? Journal of Knowledge Management, 21(1), 113–131. https://doi.org/10.1108/JKM-07-2015-0277

Weina, A., & Yanling, Y. (2022). Role of Knowledge Management on the Sustainable Environment: Assessing the Moderating Effect of Innovative Culture. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.861813

Yu Chung Wang, W., Pauleen, D., & Taskin, N. (2022). Enterprise systems, emerging technologies, and the data-driven knowledge organisation. Knowledge Management Research & Practice, 20(1), 1–13. https://doi.org/10.1080/14778238.2022.2039571

Downloads

Published

24-05-2025

How to Cite

Balbal, H., & Bouchareb, N. (2025). Reshaping knowledge management in the digital age through the integration of artificial intelligence and deep knowledge. The International Tax Journal, 52(3), 681–690. Retrieved from https://internationaltaxjournal.online/index.php/itj/article/view/93

Issue

Section

Online Access